
PHYSICAL REVIEW E JUNE 2000VOLUME 61, NUMBER 6
Scaling of interfaces in brittle fracture and perfect plasticity

Eira T. Seppa¨lä, Vilho I. Räisänen, and Mikko J. Alava
Laboratory of Physics, Helsinki University of Technology, P.O. Box 1100, FIN-02015 HUT, Finland

~Received 23 December 1999; revised manuscript received 16 February 2000!

The roughness properties of two-dimensional fracture surfaces as created by the slow failure of random fuse
networks are considered and compared to yield surfaces of perfect plasticity with similar disorder. By studying
systems up to a linear sizeL5350 it is found that in the cases studied the fracture surfaces exhibit self-affine
scaling with a roughness exponent close to 2/3, which is asymptotically exactly true for plasticity though
finite-size effects are evident for both. The overlap of yield or minimum energy and fracture surfaces with
exactly the same disorder configuration is shown to be a decreasing function of the system size and to be of a
rather large magnitude for all cases studied. The typical ‘‘overlap cluster’’ length between pairs of such
interfaces converges to a constant with increasingL.

PACS number~s!: 62.20.Mk, 62.20.Fe, 05.40.2a, 81.40.Np
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I. INTRODUCTION

Roughness of fracture surfaces~FS’s! is a currently topi-
cal problem that has opened up surprising connections
tween engineering and poorly understood questions of st
tical physics. The simple questions of why and how a cra
surface becomes rough has no easy answers since ther
multitude of experimental facts and ways for cracks to
velop or propagate. One simplification, adopted in this wo
is to neglect cases in which the prevalent feature is
propagation of ‘‘fast’’ cracks in favor of slow, adiabati
crack formation. The questions we address here are relat
how disorder affects crack surfaces and how interfaces
ated by different load-elongation responses are related.
order is present in materials at all length scales in the form
atomic impurities, dislocations, grain boundaries, and
forth.

No generally accepted picture exists yet of how sl
cracks are formed and how this process relates to crack
terfaces@1#. In three dimensions there are indications that
cracks become self-affine above a certain intermediate le
scale so that the roughness exponentz is close to 0.8. More-
over, the physics of crack advancement indicates that
generic features of phase transitions of driven lines~crack
fronts in three dimensions! become relevant@2#. Quantitative
agreement is missing, however. For slow fracture in two
mensions~2D! and at small length scales in 3D the interfa
scaling may be different in that the exponents are close
those of the minimum energy~ME! interface. These are th
same as for the random exchange Ising model~REIM! do-
main walls at zero temperature, and have therefore the e
value z52/3 in 2D @3# and the approximate value 0.4
60.01 in 3D @4–6#. The physics involved is simple: th
crack minimizes up to the pertinent length scale the surf
energyE given by

E5E dd21x@G$“z~x!%21Vr$x,z~x!%#, ~1!

where the integral includes two contributions. One ari
from a surface stiffness~proportional toG) due to the devia-
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tions “z(x) from a straight crack, and the second from
random disorder potential with a two-point correlat
^Vr(x8,z8)Vr(x,z)& where the disorder average is implie
and (x8,z8), (x,z) denote two locations inside the medium
The exponents quoted above are true when the disorder
pointlike correlations. The fluctuations of the potential wou
in an experiment correspond to a varying failure threshold
elastic modulus, etc., depending on the circumstances.
closeness of the numerical values of the roughness expon
gives rise to the intriguing question as to why a slow fractu
should resemble a global optimization like ground state
main walls. The connection is suggested by the fact that
arbitrary dimensions, lattice models that describe scalar
fect plasticity can be exactly mapped to REIM domain w
problems. For brittle fracture or vectorial failure problems
general, the correspondence is not obvious. Tw
dimensional failure is special in that there is some exp
mental evidence of the crack roughness scaling with the
main wall in the REIM, i.e., the so-called directed polym
~DP! global roughness exponent@7#. This connection be-
tween global optimization and fracture surfaces has also b
made in 2D simulations of brittle failure@8,9#. In 3D, it is
still unclear whether even just the numerical models sh
such a universality@9–11#.

In this paper we investigate in two dimensions the scal
properties of slow fracture surfaces and compare them
minimum energy surfaces with similara priori disorder. We
perform numerical simulations of the random fuse netwo
~RFN! model, which has been studied extensively as a mo
of brittle failure of disordered materials@12–14#. As an in-
troduction, we consider extensive system properties suc
fracture stress, fracture strain, and damage. For the main
studied here, dilution-type disorder, these are found to b
good agreement with the critical-defect-type arguments p
posed by Duxbury and co-workers@13# which imply loga-
rithmic scaling with system size. Note that when compa
with ‘‘reality’’ this kind of model contains two assumptions
first, the stress relaxation is supposed to be much faster
the stress rate~an adiabatic failure!; and second, one assume
6312 ©2000 The American Physical Society
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PRE 61 6313SCALING OF INTERFACES IN BRITTLE FRACTURE . . .
that the energy released by local crack formation is di
pated with no effect on the crack propagation.

The paper starts with a short description of the numer
methods used and the dynamics of adiabatic crack forma
in Sec. II. Section III discusses the strength properties
random fuse networks as a function of system sizeL. There
are a number of ways to characterize a self-affine interfaca
posteriori. This is the main theme of Sec. IV, the topic
showing that 2D brittle fracture interfaces have DP-type sc
ing. We demonstrate how both the so-called local width a
the statistical properties of ensembles of interfaces indica
similar kind of self-affine scaling. The scaling exponent
seen to be close to the DP one,z52/3. The section also
contains numerical data for varying disorder strength, an
particular compares perfect plasticity and brittle fracture
measuring the overlap of the associated interfaces sta
with the same disorder configurations. This would be p
ticularly relevant should it be that the fracture and yield
terfaces use the same ‘‘valley’’ in the landscape of the en
gies or thresholds. The paper finishes with a discussio
Sec. V.

II. CREATING THE INTERFACES

A. Numerical models

Random fuse networks are electrical analogs of elasti
and failure with disorder incorporated. One usually sets
to mimic a tensile test, implying that the extensive therm
dynamic parameters becomeVext and I ext , external voltage
and current, respectively. These correspond to displacem
and force in a real experiment. To study brittle failure o
defines the elements that connect two nodes on an orig
lattice asfuses. These have a linear voltage-current relatio
ship until a breakdown currenti b ; see Fig. 1. A second
choice would correspond to perfect plasticity, if one ma
the fuses such that the local current becomes irrevers
constant ati y and stays so unless the local voltage is reduc
in which case the conductivity becomes the original one
there is a permanentyield strain.

In the following we use two different numerical tech
niques to study both brittle and perfectly plastic RFN
Brittle failure is studied with standard adiabatic fracture
erations. These consist of solving the current balance in

FIG. 1. The voltage-current diagram of a fuse or a medium. T
↔ arrow describes ideal elastic behavior. The dashed line desc
an ideal elastic breakdown at the critical currenti b with the corre-
sponding voltagevb . The dashed arrow describes perfect plastic
with yield currenti y , and the dotted arrow describes elastic-plas
behavior with an irreversible yield strainv ir 2vb at v ir . The current
as a function of voltage with the corresponding elastic or pla
behavior of the medium may increase or decrease only in the d
tions noted by the arrows.
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system from Kirchhoff’s and Ohm’s laws and breaking af
each iteration the most strained fuse@the criterion is
min(i j /Jc,j), wherei j is the local current in each of the fuse
andJc, j is the local threshold#. The currents and voltages ar
found by solving the linear system of currents by t
conjugate-gradient method.

For perfect plasticity we use a mapping to minimum e
ergy interfaces, i.e., random exchange Ising domain wall
their ground state, where exchange constantsJi j between
nearest neighboring spins are random but non-negative
some cases we have exactly the same quenched dis
~equal thresholds for failurei b and yieldingi y[2Ji j for each
fuse! as for brittle failure, and in the following the thresho
for a fuse in both cases is denoted byJc . The simulations are
done using combinatorial optimization: finding the yield pa
~in 2D! is equivalent to the minimum cut-maximum flow
problem of network flows@15# that minimizes( inter f acei y .
This technique is more convenient than transfer matrix me
ods in that there are no restrictions for the shape of the
timal path as overhangs and arbitrary transverse steps
included in a natural fashion.

The typical choice for introducing disorder to a RFN is
pick the failure currentsJc from a prescribed probability
distributionP(Jc). The important issue is the behavior ofP
for Jc.0 and for Jc→`; the tails of the distribution are
known to have strong effects on the strength properties
damage accumulation in the case of brittle fracture. For p
fect plasticity or directed polymers the case is much simp
in that for one-dimensional interfaces in (111)-dimensional
systems such pointlike disorder is, in the renormalizat
group sense, always relevant. Thus one expects always
same scaling properties in terms of interface roughness
sample-to-sample interface energy fluctuations; these co
spond to yield stress fluctuations in plasticity. The amp
tudes, however, are nonuniversal and thus will depend on
exact form ofP.

In the following we study as typical examples the cas
where P(Jc) is a flat distribution@P(Jc)51/(2dJ) for J0
2dJ<Jc<J01dJ] and whereP corresponds to ‘‘dilution
disorder.’’ That is,P(Jc)5pd(Jc21)1(12p)d(Jc). The
fraction of fuses that remain for infinitesimal currents wi
dilution is denoted byp, which has a valuep50.8 unless
otherwise mentioned, as for the uniform distribution ca
dJ/J051. The systems are chosen so that the direction
macroscopic current flow is aligned in the^10& orientation of
the square lattice, having periodic boundaries in the perp
dicular direction. The systems are isomorphic, i.e.,Lx5Lz ,
and their sizes range fromL25102 to 3502 for brittle failure
and to 10002 for perfect plasticity. The mean positions of th
surfaces are not fixed; hence they may be anywhere in
system. The interfaces are defined in the usual way so tha
the case of overhangs, the so-called solid-on-solid appr
mation is used, i.e., the interface is found by taking the f
thest value of the interface with respect to a fixed end of
network. The number of realizationsN over which the dis-
order averaging is performed is limited by the CPU time
simulations of brittle fracture. In the case of plasticity, t
technique used leads to a roughly linear scaling with resp
to the number of fuses in a system, regardless of the thr
old distribution. The number of different random realizatio
is shown in Table I for the cases in which exactly the sa
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6314 PRE 61SEPPÄLÄ , RÄISÄNEN, AND ALAVA
random networks are studied for both brittle failure and p
fect plasticity. If only the ME surfaces are studiedN
5200–5000.

B. Formation of the interfaces

One should note that if fracture surfaces have nontriv
geometric scaling properties and in particular resemble
rected polymers~in 2D! this opens up several further que
tions: whether the outcome is independent of disor
strength, whether the disorder is always relevant as for
minimum energy surfaces, and how the surface roughn
relates to other typical quantities. The standard way of i
ating fracture in fuse networks, whether perfectly plastic
brittle, is based on extremal dynamics. The condit
min(i j /Jc,j) for the failure of the next element contains tw
effects: the disorder through the threshold and the local
rent, which depends on the environment of the fuse.

For perfect plasticity, the information necessary for fin
ing the final yield surface is contained in the initial fieldJc, j
due to the monotonicity property noticed by Roux a
Hansen@16#. Even if one simulates the development of t
system as a series of fuse network problems~the tangent
problem!, the local current never decreases in a yielding p
cess. Thus the final yield surface equals a blocking confi
ration that can be calculated from the original threshol
This is related to the fact that the surface is made much fa
to compute than the whole process by considering it as
optimization problem for the interface: the history of th
whole process or system involves much more informatio

For brittle fracture the monotonicity property is not tru
and thus no direct mapping exists between the initial disor
and a quantity to be minimized. The mapping of perfect pl
ticity to fuse networks makes it clear, on the other hand, t
the difference between the processes is smaller than it w
seem at first glance. This is because in the tangent algor
one has to solve a series of adiabatic failure problems w
the local yield thresholdsi y renormalized by subtracting th
current already passing through the fuse. Nonetheless,
failure iteration is affected by stress-enhancement effects
actly as in a failure problem with the same fuses still inta
For brittle failure, the implication of the stress enhanceme
during the failure process is that in order to obtain a mi
mum energy surface@as defined by Eq.~1!# the original dis-
order i b, j has to berenormalized. That is, the thresholds o
missing fuses contain frozen-in information about how
field of local stresses will develop and normalize the lo
thresholdsi b, j in the failure criterion. Considered in thi

TABLE I. The number of realizationsN performed in simula-
tions for exactly the same randomness of brittle failure and plas
ity.

Dilution, p Uniform, dJ/J0

L 0.8 0.85–0.97 1 0.1–0.8

10, 20 760
30–90 760 66
100 370 537 248 250
200 370
275, 350 250
-
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light, it is sensible to consider brittle fracture surfaces
‘‘blocking paths,’’ too. Yet the question remains whether t
interfaces are still in the sameuniversality class: if the cor-
relations in the renormalized disorder become differ
enough from pointlike correlations the interface scali
properties will change. For example, columnar correlatio
@Vr(x,z) constant alongxi or z] would be relevant in this
respect.

III. SCALING OF FRACTURE

A fracture can be contrasted with perfect plasticity also
looking at extensive thermodynamic quantities. The stand
ones to consider are the damagenb , the number of fuses
broken in total, and the failure currentI b and voltageVb as
computed from the maximum current of theIV curve. For
‘‘truly’’ brittle failure this definition of Vb agrees with that
defined as the end point of theIV curve. In the failure of
brittle fuse networks there is considerable evidence for
relevance of critical-defect-type effects. That is, the def
with the largest current enhancement will dictate the sca
of the current and voltage. For yield surfaces one would h
I y5E;L, DE;Lu whereu52z21 andz is the roughness
exponent. Thus the critical strength quantities, without
renormalization discussed above, are supposed to have
ferent scaling behavior in plasticity and fracture.

Figure 2 shows the scaling of damage and the stren
quantities for dilution-type disorder,p50.8. The lines in the
figure have been found with least-squares fits to data u
the assumptions of linear scaling fornb and for the other two
quantities the scalingVb ,I b;L/Aln L, which comes from the
extreme value statistics, i.e., the Gumbel distribution, stud
in the fracture case by Duxbury and coauthors@13#. It is seen
that the scaling of the number of broken fuses is asympt
cally very close to a linear one. This means that the sys
still breaks in a brittle mode forp50.8. ForVb and I b the
scaling in the whole regime beautifully follows theL/Aln L
scaling. Notice that the surface energy of yield surfaces i
principle a lower limit for nb and that both scale linearly

c-

FIG. 2. Scaling of energy of ME surfaces, closed diamonds,
fracture quantities: total damage, i.e., number of broken fusesnb ,
open circles; breaking voltageVb of the network, open squares; an
breaking currentI b of the network, open diamonds, as a function
the system sizeL. The disorder is dilution type withp50.8. The
number of realizationsN for the brittle failure case is shown in
Table I. For ME surfacesN55000 forL25102–502, N51000 for
L25602–3502. The lines are least-squares fits, linear forE andnb ,
L/Aln L for Vb and I b , to the data.
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One sees that the energy of yield surfaces or the lower l
for nb is lower by a constant factor thannb of fracture sur-
faces. Similar behavior is visible in the roughness values
the fracture and yield surfaces studied in the next sectio

IV. SCALING OF INTERFACES

A. Global and local interface width

There are several ways to characterize the scaling pro
ties of interfaces. Consider the case where an interfac
defined as a function ofx as z(x). The standard way o
looking at scaling properties is to calculate the interfa
width @17# or standard deviation, i.e., the so-called ro
mean-square roughness,

w5K 1

Ld21 (
x51

Ld21

@z~x!2 z̄#2L 1/2

, ~2!

wherez̄ denotes the mean position of an interface and^& the
disorder average over the different random configurations
the interface is self-affine,w should scale withLz, z being
the roughness scaling exponent. For self-affine interfaces
scaling exponentz is expected to be valid also for highe
order statistics. This is seen for the height-height correla
functions Gk( l )5^uz(x)z(x1 l )uk& and is applicable to the
local width as well. Note that there is noa priori reason to
use a Family-Vicsek-type of scaling ansatz with a correlat
length@18#, since there is no dynamical length scale for the
interfaces. This is an assumption for brittle failure, and it w
be shown to hold by our data below, and is moreover exa
true for perfect plasticity. It is also theoretically appeali
since slow, adiabatic failure does not involve any time sc

The local width in two dimensions is defined analogou
to the global interface roughnessw with

wloc
2 ~ l !5K 1

l (
x51

l

@z~x!2 z̄l #
2L , ~3!

where the local interface heightz̄l is averaged over window
of size l<L. One should note the obvious connection toG2
that exists for both the local and global definitions of inte
face width.

The advantage of using more complicated indicators
scaling is that one can draw conclusions based on data
much more limited system size range than with the glo
interface width. Of course, sucha posteriori techniques are
most commonly used in the context of characterizing exp
mental fracture surfaces. Here we note the fact that for sm
L finite size effects make it rather difficult to determine t
roughness exponent~if one assumes the interfaces to be tru
self-affine to begin with!. This is especially true for 3D sys
tems for which the computational costs easily become p
hibitive.

The global interface roughnessw as a function of system
size is compared between directed polymers and brittle f
ture interfaces with dilution-type disorder and uniform d
tribution of Jc in Fig. 3. As expected, for smallL the systems
suffer from finite size effects, having exponent greater th
z52/3, but eventually the exponent becomes comparabl
the value one obtains by fitting a power law to the largeL
it
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data. Specifically, in the dilution case, Fig. 3~a!, the effective
exponent for the fracture surfaces iszFS.0.82 and for the
minimum energy interfaces with exactly the same rand
threshold configurationszME,,.0.74. For larger system
sizes, which we are able to study numerically only in t
plasticity limit with large enough number of realization
zME,..0.67. For the fuses from the uniform random dist
bution, Fig. 3~b!, the fracture surfaces scale withzFS.0.73
and the yield surfaces from the networks with exactly t
same random configurations havezME,,.0.74. Hence the
finite sizes effects seem to be more similar between the
cesses than in the dilution case. For larger system size
minimum energy interfaceszME,..0.69.

Figure 4 compares the local width of directed polymers
the brittle fracture interface for dilution-type disorder wi
p50.8. For directed polymers one sees that thez52/3 scal-
ing is valid for larger system sizes in the region where
window sizel< 1

5 L. With open boundary conditions the sca
ing region would be larger. However, for smaller system s
L251002 there is a visible amplitude difference compared
the larger system sizes. The fracture surfaces show sim
behavior but have larger finite size effects when compare
the yield surfaces, and they have a larger amplitude, too, t
minimum energy surfaces in local and in global width sc
ing.

FIG. 3. The interface widthw versus the system sizeL for brittle
fracture interfaces, closed diamonds, and the minimum energy o
open diamonds, from the same random networks. Open circles
minimum energy interfaces from larger system sizes. The diso
is ~a! dilution type withp50.8 and~b! from uniform distribution of
fuse thresholds withdJ/J051. The number of different random
realizations for exactly the same fracture and yield surfaces
shown in Table I. ME surfaces haveN51000 forL253002,4002,
N5500 for L255002–7002, and N5200 for L258002–10002 in
~a!, N5500 for L251202–4002 and N5200 for L255002–10002

in ~b!. The lines are guides to the eye with a slopez52/3.
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6316 PRE 61SEPPÄLÄ , RÄISÄNEN, AND ALAVA
Our result supports the conclusion of Ref.@9# that 2D
brittle fracture surfaces are in the directed polymer univ
sality class (z52/3), although due to the stronger finite si
effects the asymptotic region is harder to reach than for y
surfaces.

B. Roughness statistics

Next we address the higher-order statistics of fracture
faces. For directed polymers one knows that the end-p
transverse deviation distributionz(x) @x(t) in the ordinary
DP notation#, is roughly Gaussian for the standard case
one fixed and one free end~see, e.g.,@3#! and follows a
scaling form P@z(L)#; f (z/Lz). One can likewise write
down a scaling form for the interface energy. Next we
sume that the brittle fracture interfaces obey similar s
affine scaling and study the roughness probability distri
tion P(w,L) as a function ofL ~we concentrate on thep
50.8 case of the previous subsection!. Figure 5 shows a

FIG. 4. The local interface roughnesswloc versus the window
size l for the dilution type of disorder withp50.8. The system size
L2510002 hasN52000, while for all the other system sizes th
data are from the same configurations as the data in Fig. 3~a!. The
line is a guide to the eye with a slopez52/3. For the minimum
energy interfaces thez52/3 scaling is seen in a regionl ,(1/5)L
for larger system sizes, whileL251002 has a visible amplitude
difference. Periodic boundaries are used in the transverse dire
of the external voltage. The correlation between the local width
the elastic fracture and plastic yield surfaces is clearly seen.

FIG. 5. The histogramP(w) of the roughness for the ideal ela
tic and perfect plastic yield surfaces in systems of sizeL253502

and dilution type of disorder withp50.8. The data are from the
same configurations as the data in Fig. 3~a!.
-
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r-
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typical example of such a distribution: it is not center
around zero and is reminiscent of a log-normal or Poisson
distribution. This can be understood qualitatively since
roughnessw is also a measure of the nonzero maximu
transverse displacementz. The figure includes a distribution
for ME surfaces from the same systems, too.

As one could see already in the previous subsection,
2D fracture surfaces are rougher than the minimum ene
surfaces~i.e., assuming self-affine scaling in both cases,
amplitude of the roughnessw/Lz is larger for FS’s!. This is
visible here also, since the distribution ofP(w) is not only
wider but extends to higher values for the fracture ca
While assuming thatP(w) follows the same self-affine sca
ing law asP@z(L)# we may study the disorder standard d
viation

s~w!5^~w2w̄!2&1/2, ~4!

wherew is from a single random system andw̄ is the global
disorder-averaged roughness calculated using Eq.~2!. s(w)
scales withL2/3, too, although the data are more scatter
due to the fact that higher-order statistics are always m
vulnerable to the finiteness of the statistics than the inte
of them.

In Fig. 6 we collapse the data of the cumulative sums
the distributionsP(w,L) for various L. For both kinds of

ion
f

FIG. 6. Cumulative sums ofP(w) for both fracture~a! and
minimum energy surfaces~b! for various system sizes with dilution
type of disorder,p50.8. The data are from the same configuratio
as the data in Fig. 3~a!. The data have been scaled withL0.8 in ~a!
and withL2/3 in ~b!.
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interface the data collapse is better with exponentsz.2/3,
which is due to the finite size effects. For fracture surfa
z50.8, as in Fig. 3~a!, seems to work nicely, and for th
yield surfacesz50.74 would be better thanz52/3. In our
opinion the figure justifies the assumption of an asympt
cally self-similar scaling ofP@w(L)#; f (w/Lz).

C. Scaling of overlap quantities

The average overlapPO of fracture and minimum energ
surfaces as a function of the system size for the dilution c
is seen in Fig. 7~a!. Overlap is defined as the fraction of th
disorder realizations in which at least one (x,z) coordinate
pair is common between the fracture and yield surfac
Clearly the overlap is reduced as a function of the sys
size. This is not surprising, because with increasing sys
size the probability of the first breaks taking place at
globally weakest place decreases. However, if one exp
the overlap quantity to originate from the result of deposit
the surfaces randomly~like particles of finite width on a 1D
line segment of lengthL), one obtainsPran5(AFSwFS
1AMEwME)/L. AFS andAME are prefactors needed to com
pute the typical geometrical extent from the roughness
ueswFS and wME . In the figure we have plottedPran from
the same RFN configurations asPO , with AFS5AME57.5,
which is a rather large value to be realistic; hencePOÓ ran .
In the figurePran has a slope.20.2 while the asymptotic
scaling according to the random deposition argument sho
be Pran;L21/3 . For small systems the average overlap
very large, of the order of 0.5 in the particular case stud
here.

Figure 7~b! shows the average sizês& of overlapping
clusters. The overlapping cluster is defined as the numbe
neighboring common (x,z) coordinate pairs. The overla
cluster size saturates at^s&.8.5. Figure 7~c! shows the av-
erage total length of the overlap in configurations that
have an overlap, i.e., ((s)/NO , whereNO5PON. One may
write ((s)/NO5(^s&NsNO)/NO5^s&Ns , where Ns is the
number of overlap clusters in a system that has overlaps
assuming thatNs;L and ^s&5const, we get ((s)/NO;L,
which is demonstrated in the figure. Since in the largeL
limit ( (s)/NO5C1L1C2 , C2.23, there is a crossover i
systems of sizeL.27, because in the small-system-size lim
(s must be smaller thanL. On the other hand,C150.15 tells
us that approximately 15% of the length of the fracture a
yield surfaces are overlapping with each other. The scen
is that if the fracture happens to start from the same m
mum energy valley where the DP is located, it will natura
stay localized there; however, the associated surface stiff
is weaker and thus the excursions. Notice the saturatio
the cluster size, which agrees with the scenario.

Figure 8 shows four examples of what happens with va
ing disorder strengthdJ/J0 for L5100. The subplots dem
onstrate several effects. For the weakest disorder, both
interfaces are nevertheless ‘‘rough’’~i.e., not flat!, which
shows that in spite of a single, growing crack even the bri
fracture case can produce a crack that fluctuates in the tr
verse direction. The qualitative behavior is the same for b
cases; note that for the yield surfaces one expects a La
length scale on which the interfaces look flat due to the co
petition between disorder and elasticity. With increasing d
s
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order the crack is finally localized in the lower part of th
system—the threshold field is rescaled in all the cases w
the ‘‘initial’’ random number being kept constant. Mean
while, the damage for brittle fracture grows strongly. Noti

FIG. 7. ~a! Fraction of the disorder configurations,PO , in which
the fracture surface and the minimum energy interface do hav
overlap, i.e., at least one common (x,z)-coordinate pair, open
circles. The disorder is dilution type withp50.8. The data are from
the same configurations as the data in Fig. 3~a!. The closed circles
are for comparison with the valuePran57.5(wFS1wME)/L from
Fig. 3~a!; see the text for details.~b! The average sizês&, i.e., the
number of common neighboring (x,z)-coordinate pairs, of the over
lapping clusters as a function of the system size. The overlap clu
size saturates at^s&.8.5. ~c! The total length of overlap in configu
rations that do have an overlap in their interfaces,(s/NO . The
lines are linear least-squares fits to the data.
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how the yield~minimum energy! surface moves in the sys
tem asdJ/J0 is changed. For the two cases with weak
disorder the surface stays the same. In two of the subp
there is considerable overlap between the fracture and
yield surfaces:dJ/J051 leads to a total overlap of(s582.

Figure 9 shows the dependencies of the roughness
overlap quantities on the disorder strength. Both for the
lution case, Fig. 9~a!, and for systems with randomness fro
the uniform distribution, Fig. 9~b!, the fracture and yield sur
faces are always rough, except for the finite size effects
the small-dJ/J0 limit. Even in this case the strong disord
fixed point is attractive and we simply have the result that
system size is smaller than the Larkin length above wh
the asymptotic behavior is seen. The roughness incre
with decreasingp until the bond-percolation limitpc51/2 is
reached and the surfaces become fractals, with the co
sponding hull exponent. In the insets the average overlapPO
and the average overlapping cluster size^s& are shown.PO
increases for both types of disorder with increasing disor
strength, except in the infinitesimal disorder,p512e and
dJ/J05e, limits, where it naturally diverges; the same is tr
for ^s& even with finite disorder. In order to comparePO
with the random deposition argument,Pran is plotted from
the data of the same configurations withAFS5AME58 show-
ing againPO[” Pran . ^s& seems to saturate with increasin
disorder strength for both types of disorder around^s&
.8 –10, which might be a coincidence, since one co
guess it to be disorder-type dependent.

V. DISCUSSION

This paper has explored the connections between br
fracture and minimum energy surfaces. We have given
merical support for the idea of these being in the same
versality class in two spatial dimensions. This argumen
based on the scaling of interface width and local roughn
and the statistics of ensembles of interfaces. For both sc
brittle fracture and perfect plasticity, or minimum energ
interfaces these turn out to have similar scaling propert

FIG. 8. Examples of final damage~diamonds! and the respective
brittle failure ~solid line! and yield ~dotted line! surfaces for
dJ/J050.3, 0.5, 0.8, and 1.0. The system sizes areL251002, and
the random initial configuration in each system is the same, but
Jc’s are rescaled with the correspondingdJ. For dJ/J051 the total
overlap of fracture and yield surfaces(s585.
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indicating that brittle fracture interfaces have a roughn
exponent of 2/3~as for directed polymers! and are also truly
self-affine. In spite of the fact that we have studied only tw
types of disorder distribution, we nevertheless believe t
the numerics points to a picture of asymptotically rou
cracks in spite of the stress-enhancement effects, which
would expect to play a role in brittle fracture with a larg
dominating crack. Such is the case in particular for dilutio
type, relatively weak disorder, a main part of our study. N
tice that for weak disorder even minimum energy surfa
tend to be relatively flat as the amplitude of the roughnes
small.

The results presented earlier were obtained for syst
that were governed by extreme scaling-type arguments.
role of the disorder can be tested in another way, more
evant to standard fracture surface experiments, by introd
ing a notch, or a row of prefailed fuses. The current dis

e

FIG. 9. Interface widthw of the fracture and minimum energ
surfaces with varying disorder strength for the dilution type of d
order ~a! and uniform distribution of fuse thresholds~b!. The sys-
tem sizeL251002 for each system and the number of realizations
shown in Table I. The insets show for the same systems the frac
of overlapping disorder configurationsPO , open triangles,Pran

with AFS5AME58 in both cases, closed triangles, and the aver
overlapping cluster sizeŝs&, diamonds, as a function of the diso
der strength.
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bution around the crack tip is a combination of t
enhancement effect of the crack plus the additional fluct
tions created by possible off-path or fracture process z
damage. Born-model simulations by Caldarelliet al. @19#
show that self-affine cracks can avoid surface tension effe
i.e., they do not straighten out, if started from point seeds
our case the question becomes whether the effective su
tension of the notch plus the grown crack wins over disord
remembering that the stress enhancement for a symm
crack is largest on axis. This is a necessary mechanism
any self-affine behavior, whether of the minimum ener
surface universality class or not. Figure 10 shows the in
face roughness of yield and brittle fracture surfaces fo
fixed system size and varying notch length. It transpires
for both ME and brittle fracture surfaces the notch effe
does not imply the flattening. Note the earlier arguments
yield surfaces have ahigher surface tension. This is agai
due to the memory effect, which renormalizes the thresho
in the tangent problems so that they are smallest on the c
axis.

FIG. 10. Roughness of fracture and minimum energy surface
a notched sample with varying notch length. The system sizes
L251002 and the disorder is dilution type withp50.8.
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There are several experimental indications of the conc
sion that brittle fracture interfaces exhibit self-affine beha
ior, with a roughness exponent close if not equal to the p
fect plasticity one. Experiments done on real materials
bridge the gap between the two extreme limits. For su
studies the expected behavior would in 2D, assuming s
failure, be self-affine as well. The extraction of the roughn
exponent has been done here using the local width as a m
sure. For ensembles of experiments one should note the
tistical implications of the scaling of the roughness distrib
tion width and of the shape of the width probabili
distribution. The relative ‘‘irrelevance’’ of a notch hint
about the possibility of pinning-center-like scaling prope
ties, as should be true for the perfect plasticity case:
notch pins the final crack with certainty if it is large enoug

Finally, we note that there is no rigorous theoretical arg
ment that would explain why brittle fracture seems to follo
ME-type scaling. Indeed, we have here studied only the s
ing of the interface roughness, and the aspect of interf
energetics in terms of, e.g., the energy fluctuation exponeu
has been left aside. Notice that the bare strength prope
are governed by logarithmic effects in the case of brit
failure. For brittle fracture interfaces to result from glob
optimization the initial failure thresholds have to be reno
malized by the correlations that the stress intensities of
crack history induce. For such extremal statistics proces
no theory exists for the time being, unlike the case of
quenched Laplacian breakdown model for which one can
real-space renormalization@20#.
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