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Scaling of interfaces in brittle fracture and perfect plasticity
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The roughness properties of two-dimensional fracture surfaces as created by the slow failure of random fuse
networks are considered and compared to yield surfaces of perfect plasticity with similar disorder. By studying
systems up to a linear size=350 it is found that in the cases studied the fracture surfaces exhibit self-affine
scaling with a roughness exponent close to 2/3, which is asymptotically exactly true for plasticity though
finite-size effects are evident for both. The overlap of yield or minimum energy and fracture surfaces with
exactly the same disorder configuration is shown to be a decreasing function of the system size and to be of a
rather large magnitude for all cases studied. The typical “overlap cluster” length between pairs of such
interfaces converges to a constant with increasing

PACS numbgs): 62.20.Mk, 62.20.Fe, 05.46a, 81.40.Np

. INTRODUCTION tions Vz(x) from a straight crack, and the second from a
random disorder potential with a two-point correlator
Roughness of fracture surfacésS's) is a currently topi- (v, (x’,z')V,(x,z)) where the disorder average is implied
cal problem that has opened up surprising connections bgg,q «',z), (x,z) denote two locations inside the medium.
tween engineering and poorly understood questions of statighe exponents quoted above are true when the disorder has
tical physics. The simple questions of why and how a Crac_‘Elointlike correlations. The fluctuations of the potential would
surface becomes rough has no easy answers since there ig;a,, experiment correspond to a varying failure threshold or
multitude of experimental facts and ways for cracks to de'elastic modulus, etc., depending on the circumstances. The

yelop Or propagate. Qne S|n_1pllf|cat|0n, adopted in this Work’closeness of the numerical values of the roughness exponents
is to neglect cases in which the prevalent feature is the ives rise to the intriguing question as to why a slow fracture
propagation of “fast” cracks in favor of slow, adiabatic 9 guing q y

crack formation. The questions we address here are related %quld resemble a globa_l optimization like ground state dq-
how disorder affects crack surfaces and how interfaces crdl'@in walls. The connection is suggested by the fact that, in
ated by different load-elongation responses are related. Di@'bitrary dimensions, lattice models that describe scalar per-
order is present in materials at all length scales in the form ofeCt plasticity can be exactly mapped to REIM domain wall
atomic impurities, dislocations, grain boundaries, and sdroblems. For brittle fracture or vectorial failure problems in
forth. general, the correspondence is not obvious. Two-
No genera”y accepted picture exists yet of how S|0Wdimensional failure is Special in that there is some experi-
cracks are formed and how this process relates to crack irmental evidence of the crack roughness scaling with the do-
terfaceq 1]. In three dimensions there are indications that themain wall in the REIM, i.e., the so-called directed polymer
cracks become self-affine above a certain intermediate lengtfoP) global roughness exponefif]. This connection be-
scale so that the roughness expongrt close to 0.8. More- tween global optimization and fracture surfaces has also been
over, the physics of crack advancement indicates that thmade in 2D simulations of brittle failurg8,9]. In 3D, it is
generic features of phase transitions of driven liGesck  still unclear whether even just the numerical models show
fronts in three dimensiondecome relevar2]. Quantitative  such a universality9—11].
agreement is missing, however. For slow fracture in two di- |n this paper we investigate in two dimensions the scaling
mensiong2D) and at small length scales in 3D the interfaceproperties of slow fracture surfaces and compare them to
scaling may be different in that the exponents are close tginimum energy surfaces with similarpriori disorder. We
those of the minimum energME) interface. These are the perform numerical simulations of the random fuse network

same as for the random exchange Ising md&&IM) do-  (REN) model, which has been studied extensively as a model
main walls at zero temperature, and have therefore the exagt prittle failure of disordered materia[d2—14. As an in-

value {=2/3 in 2D [3] and the approximate value 0.41

+0.01 in 3D [4-6]. The physics involved is simple: the

crack minimizes up to the pertinent length scale the surfac
energyE given by

troduction, we consider extensive system properties such as
fracture stress, fracture strain, and damage. For the main case
&tudied here, dilution-type disorder, these are found to be in
good agreement with the critical-defect-type arguments pro-
posed by Duxbury and co-workef43] which imply loga-
EIJ d? I {VZ(0}2+ Vi{x,z(x)}], (1) rithmic scaling with system size. Note that when compared
with “reality” this kind of model contains two assumptions:
where the integral includes two contributions. One arisedirst, the stress relaxation is supposed to be much faster than
from a surface stiffnesgproportional tol') due to the devia- the stress ratéan adiabatic failurg and second, one assumes
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system from Kirchhoff's and Ohm’s laws and breaking after
each iteration the most strained fugéhe criterion is
min(i;/J;;), wherei; is the local current in each of the fuses
andJ.  is the local threshold The currents and voltages are
found by solving the linear system of currents by the
conjugate-gradient method.
For perfect plasticity we use a mapping to minimum en-
ergy interfaces, i.e., random exchange Ising domain walls in
FIG. 1. The voltage-current diagram of a fuse or a medium. Thetheir ground state, where exchange constaktsbetween
«— arrow describes ideal elastic behavior. The dashed line describeggarest neighboring spins are random but non-negative. In
an ideal elastic breakdown at the critical currgnwith the corre-  some cases we have exactly the same quenched disorder
sponding voltage, . The dashed arrow describes perfect plasticity (equal thresholds for failurig, and yie|dingiy523ij for each
with yield currentiy, and the dotted arrow describes elastic-plasticfuse) as for brittle failure, and in the following the threshold
behavior with an irreversible yield strain. —v, atv;. . The current  for a fuse in both cases is denotedy The simulations are
as a function of voltage with the corresponding elastic or plasticygne using combinatorial optimization: finding the yield path
pehavior of the medium may increase or decrease only in the direcn-n 2D) is equivalent to the minimum cut-maximum flow
tions noted by the arrows. problem of network flowg15] that minimizespiertacdy -
~__ Thistechnique is more convenient than transfer matrix meth-
that the energy released by local crack formation is dissiygs in that there are no restrictions for the shape of the op-

pated with no effect on the crack propagation. _ timal path as overhangs and arbitrary transverse steps are
The paper starts with a short description of the numericajcjuded in a natural fashion.

methods used and the dynamics of adiabatic crack formation The typical choice for introducing disorder to a RFN is to

in Sec. Il. Section Il discusses_the strength properties Obick the failure currentsl, from a prescribed probability
random fuse networks as a function of system &iz&here  istribution P(J.). The important issue is the behavior Bf

are a number of ways to characterize a self-affine interéace 4, J.=0 and forJ,—; the tails of the distribution are
posteriori This is the main theme of Sec. IV, the topic of nown to have strong effects on the strength properties and
showing that 2D brittle fracture interfaces have DP-type scalyamage accumulation in the case of brittle fracture. For per-
ing. We demonstrate how both the so-called local width andgct pjasticity or directed polymers the case is much simpler
the statistical properties of ensembles of interfaces indicate @ that for one-dimensional interfaces in-{1L)-dimensional
similar kind of self-affine scaling. The scaling exponent iSgysiems such pointlike disorder is, in the renormalization
seen to be close to the DP ong=2/3. The section also g5y sense, always relevant. Thus one expects always the
contains numerical data for varying disorder strength, and iikame scaling properties in terms of interface roughness and
particular compares perfect plasticity and brittle fracture bysample-to-sample interface energy fluctuations; these corre-
measuring the overlap of the associated interfaces startingyond to yield stress fluctuations in plasticity. The ampli-

with the same disorder configurations. This would be pary,qes, however, are nonuniversal and thus will depend on the
ticularly relevant should it be that the fracture and yield in- oy act form ofP.

terfaces use the same “valley” in the landscape of the ener- | the following we study as typical examples the cases
gies or thresholds. The paper finishes with a discussion ihere P(J.) is a flat distribution] P(J.)=1/(26J) for J,
Sec. V. —8J=<J.<Jy+ 8J] and whereP corresponds to “dilution
disorder.” That is,P(J.)=pd&(I.—1)+(1—p)S&(J;). The
Il. CREATING THE INTERFACES fraction of fuses that remain for infinitesimal currents with
dilution is denoted byp, which has a valugp=0.8 unless
otherwise mentioned, as for the uniform distribution case
Random fuse networks are electrical analogs of elasticitypJ/Jo=1. The systems are chosen so that the direction of
and failure with disorder incorporated. One usually sets outmacroscopic current flow is aligned in th&0) orientation of
to mimic a tensile test, implying that the extensive thermo-the square lattice, having periodic boundaries in the perpen-
dynamic parameters becorvg,; andl.,;, external voltage dicular direction. The systems are isomorphic, ilg.=L,,
and current, respectively. These correspond to displacemeand their sizes range froir?= 107 to 35 for brittle failure
and force in a real experiment. To study brittle failure oneand to 1008 for perfect plasticity. The mean positions of the
defines the elements that connect two nodes on an origingurfaces are not fixed; hence they may be anywhere in the
lattice asfuses These have a linear voltage-current relation-system. The interfaces are defined in the usual way so that, in
ship until a breakdown currerni,; see Fig. 1. A second the case of overhangs, the so-called solid-on-solid approxi-
choice would correspond to perfect plasticity, if one mademation is used, i.e., the interface is found by taking the fur-
the fuses such that the local current becomes irreversiblthest value of the interface with respect to a fixed end of the
constant at, and stays so unless the local voltage is reducednetwork. The number of realizatio$ over which the dis-
in which case the conductivity becomes the original one anarder averaging is performed is limited by the CPU time for
there is a permanenyield strain simulations of brittle fracture. In the case of plasticity, the
In the following we use two different numerical tech- technique used leads to a roughly linear scaling with respect
niques to study both brittle and perfectly plastic RFN’s.to the number of fuses in a system, regardless of the thresh-
Brittle failure is studied with standard adiabatic fracture it- old distribution. The number of different random realizations
erations. These consist of solving the current balance in this shown in Table | for the cases in which exactly the same

A. Numerical models
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TABLE I. The number of realizationsl performed in simula-
tions for exactly the same randomness of brittle failure and plastic- ;E %56051;‘
ity. 5 .| av. oLy :
— . g 10 F o1, 0.58L /(L)
Dilution, p Uniform, 6J/J, )
L 0.8 0.85-0.97 1 0.1-0.8 on
10, 20 760 %wl »
30-90 760 66 =
100 370 537 248 250 b
200 370 107 TS
275, 350 250 system size (L)

FIG. 2. Scaling of energy of ME surfaces, closed diamonds, and

. . . fracture quantities: total damage, i.e., number of broken foges
random ngtyvorks are studied for both brittle failure apd per—oIoen circles: breaking voltagé, of the network, open squares; and
fect plasticity. If only the ME surfaces are studidd

breaking current, of the network, open diamonds, as a function of

=200-5000. the system sizé&. The disorder is dilution type witip=0.8. The
number of realizationdN for the brittle failure case is shown in
B. Formation of the interfaces Table I. For ME surfacedl=5000 forL?=10°-5¢, N=1000 for
2~ . : L
One should note that if fracture surfaces have nontrivial 6% ~35C" The lines are least-squares fits, linearEoandns ,

geometric scaling properties and in particular resemble git/VInL for Vi, andlp, to the data.

rected polymergin 2D) this opens up several further ques-
tions: whether the outcome is independent of disordefight, it is sensible to consider brittle fracture surfaces as
strength, whether the disorder is always relevant as for 2Dblocking paths,” too. Yet the question remains whether the
minimum energy surfaces, and how the surface roughnesaterfaces are still in the sammiversality classif the cor-
relates to other typical quantities. The standard way of iterrelations in the renormalized disorder become different
ating fracture in fuse networks, whether perfectly plastic orenough from pointlike correlations the interface scaling
brittle, is based on extremal dynamics. The conditionproperties will change. For example, columnar correlations
min(i;/J;;) for the failure of the next element contains two [V,(x,z) constant along; or z] would be relevant in this
effects: the disorder through the threshold and the local currespect.
rent, which depends on the environment of the fuse.

For perfect plasticity, the information necessary for find- Il. SCALING OF FRACTURE
ing the final yield surface is contained in the initial field; ) o
due to the monotonicity property noticed by Roux and A fracture can be contrasted with perfect plasticity also by
Hansen[16]. Even if one simulates the development of thelooking at extensive thermodynamic quantities. The standard
system as a series of fuse network problefte tangent ©Ones to consider are the damage, the number of fuses
problen), the local current never decreases in a yielding proProken in total, and the failure currehf and voltageV,, as
cess. Thus the final yield surface equals a blocking configucomputed from the maximum current of the curve. For
ration that can be calculated from the original thresholds.truly” brittle failure this definition of V,, agrees with that
This is related to the fact that the surface is made much fastélefined as the end point of tH& curve. In the failure of
to compute than the whole process by considering it as ahrittle fuse networks there is considerable evidence for the
optimization problem for the interface: the history of the relevance of critical-defect-type effects. That is, the defect
whole process or system involves much more information. with the largest current enhancement will dictate the scaling

For brittle fracture the monotonicity property is not true Of the current and voltage. For yield surfaces one would have
and thus no direct mapping exists between the initial disordeky=E~L, AE~L’ where§=27—1 and{ is the roughness
and a quantity to be minimized. The mapping of perfect plasexponent. Thus the critical strength quantities, without the
ticity to fuse networks makes it clear, on the other hand, thatenormalization discussed above, are supposed to have dif-
the difference between the processes is smaller than it woul@rent scaling behavior in plasticity and fracture.
seem at first glance. This is because in the tangent algorithm Figure 2 shows the scaling of damage and the strength
one has to solve a series of adiabatic failure problems witljluantities for dilution-type disordep=0.8. The lines in the
the local yield thresholds, renormalized by subtracting the figure have been found with least-squares fits to data using
current already passing through the fuse. Nonetheless, eatie assumptions of linear scaling fioy and for the other two
failure iteration is affected by stress-enhancement effects exguantities the scalinyy, ,1,~L/ JInL, which comes from the
actly as in a failure problem with the same fuses still intact.extreme value statistics, i.e., the Gumbel distribution, studied
For brittle failure, the implication of the stress enhancements the fracture case by Duxbury and coauthdr3]. It is seen
during the failure process is that in order to obtain a mini-that the scaling of the number of broken fuses is asymptoti-
mum energy surfacias defined by Eq(1)] the original dis-  cally very close to a linear one. This means that the system
orderiy, ; has to berenormalized That is, the thresholds or still breaks in a brittle mode fop=0.8. ForV,, and |, the
missing fuses contain frozen-in information about how thescaling in the whole regime beautifully follows thé/n L
field of local stresses will develop and normalize the localscaling. Notice that the surface energy of yield surfaces is in
thresholdsiy, j in the failure criterion. Considered in this principle a lower limit forn, and that both scale linearly.
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One sees that the energy of yield surfaces or the lower limit 10°
for ny, is lower by a constant factor tham, of fracture sur-  Fracture surface @
faces. Similar behavior is visible in the roughness values of © Minimum energy
the fracture and yield surfaces studied in the next section. By L .goooood
- *
g 2t
IV. SCALING OF INTERFACES -gn o 008
g 10 6
A. Global and local interface width e 4
There are several ways to characterize the scaling proper-
ties of interfaces. Consider the case where an interface is 10" o v -
defined as a function ok as z(x). The standard way of system size (L)
looking at scaling properties is to calculate the interface
width [17] or standard deviation, i.e., the so-called root- 10°
mean-square roughness, # Fracture surface (b)
© Minimum energy
pd-1 1/2 s
1 —, 5w 00
w= > [z0-21%) 2 5 o
Ld*l =1 —qé ‘.‘g;)V
) * 3000
J— =] 0
wherez denotes the mean position of an interface @nthe g ¢
disorder average over the different random configurations. If
the interface is self-affiney should scale with_¢, ¢ being o
the roughness scaling exponent. For self-affine interfaces the 10' 10° 10°
scaling exponent is expected to be valid also for higher- system size (L)

order statistics. This is seen for the height-height correlation

functionsGk(l)=(|z(x)z(x+l)|k) and is applicable to the FIG. 3. The interface widtlw versus the system sizefor brittle

. . o fracture interfaces, closed diamonds, and the minimum energy ones,
local Wldth. as \.Ne”' Note that thgre IS rmpno.n reason to. open diamonds, from the same random networks. Open circles are
use a Famlly-V|csek—type of Scalmg, ansatz with a Correlat'or}ninimum energy interfaces from larger system sizes. The disorder
length[ 18], since there is no dynamical length scale for thesgg () gilution type withp= 0.8 and(b) from uniform distribution of
interfaces. This is an assumption for brittle failure, and it will f,qe thresholds with33/J,=1. The number of different random
be shown to hold by our data below, and is moreover exactlyggjizations for exactly the same fracture and yield surfaces is
true for perfect plasticity. It is also theoretically appealing shown in Table I. ME surfaces hawé= 1000 for L?= 30, 40,
since slow, adiabatic failure does not involve any time scalen=500 for L2=50F—70F, and N=200 for L2=80F—1008 in

The local width in two dimensions is defined analogously(a), N=500 for L2=120?—40¢ and N=200 for L2=500*—100CG

to the global interface roughnesswith in (b). The lines are guides to the eye with a slape2/3.
|
1 _ - . _— . .
w2 ()= T S [20-272), 3) data. Specifically, in the dilution case, FigaB the effective
x=1 exponent for the fracture surfacesdss=0.82 and for the

o minimum energy interfaces with exactly the same random

where the local interface heightis averaged over windows threshold configurations/ye .=0.74. For larger system
of sizel<L. One should note the obvious connectior@®  sizes, which we are able to study numerically only in the
that exists for both the local and global definitions of inter-plasticity limit with large enough number of realizations,
face width. {me,~=0.67. For the fuses from the uniform random distri-

The advantage of using more complicated indicators obution, Fig. 3b), the fracture surfaces scale withs=0.73
scaling is that one can draw conclusions based on data inand the yield surfaces from the networks with exactly the
much more limited system size range than with the globakame random configurations hayge -=0.74. Hence the
interface width. Of course, such posterioritechniques are finite sizes effects seem to be more similar between the pro-
most commonly used in the context of characterizing expericesses than in the dilution case. For larger system sizes of
mental fracture surfaces. Here we note the fact that for smathinimum energy interfaceye - =0.69.
L finite size effects make it rather difficult to determine the Figure 4 compares the local width of directed polymers to
roughness exponefif one assumes the interfaces to be truly the brittle fracture interface for dilution-type disorder with
self-affine to begin with This is especially true for 3D sys- p=0.8. For directed polymers one sees that fke?/3 scal-
tems for which the computational costs easily become proing is valid for larger system sizes in the region where the
hibitive. window sizel < L. With open boundary conditions the scal-

The global interface roughnessas a function of system ing region would be larger. However, for smaller system size
size is compared between directed polymers and brittle frad-2= 100 there is a visible amplitude difference compared to
ture interfaces with dilution-type disorder and uniform dis-the larger system sizes. The fracture surfaces show similar
tribution of J.. in Fig. 3. As expected, for smadll the systems behavior but have larger finite size effects when compared to
suffer from finite size effects, having exponent greater tharnhe yield surfaces, and they have a larger amplitude, too, than
{=2/3, but eventually the exponent becomes comparable tminimum energy surfaces in local and in global width scal-
the value one obtains by fitting a power law to the lakge- ing.
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1o 1.00
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"3 22242385° B I
E, 2 OgggA E: 0.80
2 B
Q o ME, L=1000
"gb %3 o ME, L=350 g 0.60
= ot o2 AME, L=275 2
e ¢2’%§5§§ < ©ME, L=100 L
® FS, L=350 o - r
§ 10° ¢ 2‘555 AFS, L=275 = 040
= ! éé # ES, L=100 =
— 1
} € 020
10' 10° @)
window size (1)
0.00 & , - -
FIG. 4. The local interface roughnesg,. versus the window 0.00 ] 3'10 hn 0.20 08 0.30
sizel for the dilution type of disorder witlp=0.8. The system size scaled roughness (w/L")
L?=100¢ hasN=2000, while for all the other system sizes the
data are from the same configurations as the data in Fi. Bnhe 1.00
line is a guide to the eye with a sloge=2/3. For the minimum —
energy interfaces thé=2/3 scaling is seen in a regidr< (1/5)L é 0.80 |
for larger system sizes, while?=10¢ has a visible amplitude e
difference. Periodic boundaries are used in the transverse direction £ 060 |
of the external voltage. The correlation between the local width of 2 '
the elastic fracture and plastic yield surfaces is clearly seen. ©
& 040 f
. <
Our result supports the conclusion of Rg8] that 2D =
brittle fracture surfaces are in the directed polymer univer- g 020 |
sality class ¢=2/3), although due to the stronger finite size o
effects the asymptotic region is harder to reach than for yield 0.00

surfaces. 000  0.10 0.20 0.30 0.40
scaled roughness (w/L™")

B. Roughness statistics .
FIG. 6. Cumulative sums oP(w) for both fracture(a) and

Next we address the higher-order statistics of fracture surminimum energy surface®) for various system sizes with dilution
faces. For directed polymers one knows that the end-poirt/pe of disorderp=0.8. The data are from the same configurations
transverse deviation distributiar(x) [x(t) in the ordinary as the data in Fig.(®). The data have been scaled with®in (a)

DP notatior, is roughly Gaussian for the standard case ofand withL??in (b).
one fixed and one free en@ee, e.g.[3]) and follows a
scaling form P[z(L)]~f(z/L%). One can likewise write typical example of such a distribution: it is not centered
down a Scaling form for the interface energy. Next we as-around zero and is reminiscent of a Iog-normal or Poissonian
sume that the brittle fracture interfaces obey similar self-distribution. This can be understood qualitatively since the
affine scaling and study the roughness probability distribufoughnessw is also a measure of the nonzero maximum
tion P(W,L) as a function ofL (we concentrate on thp transverse displacememtThe figure includes a distribution
=0.8 case of the previous subseclioffigure 5 shows a for ME surfaces from the same systems, too.

As one could see already in the previous subsection, the

0.08 —————————— 2D fracture surfaces are rougher than the minimum energy
— Fracture surface surfaceqi.e., assuming self-affine scaling in both cases, the

Minimum energy amplitude of the roughness/L¢ is larger for FS’$. This is

0.06 | : visible here also, since the distribution B{w) is not only

wider but extends to higher values for the fracture case.
While assuming thaP(w) follows the same self-affine scal-
ing law asP[z(L)] we may study the disorder standard de-
viation

0.04

002 | a(w)=((w—w)?)¥2, (4

histogram [P(w)] of roughness

wherew is from a single random system andis the global

2 4 6 8 10 12 14 16 18 20 22 24 26 disorder-gverz?sged roughness calculated using(Bqo(w)

scales withL<~, too, although the data are more scattered

due to the fact that higher-order statistics are always more
FIG. 5. The histogranP(w) of the roughness for the ideal elas- Vulnerable to the finiteness of the statistics than the integral

tic and perfect plastic yield surfaces in systems of diZe- 350 of them.

and dilution type of disorder witp=0.8. The data are from the In Fig. 6 we collapse the data of the cumulative sums of

same configurations as the data in Fig)3 the distributionsP(w,L) for variousL. For both kinds of

0.00

roughness (w)
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©

interface the data collapse is better with expone€m2/3,
which is due to the finite size effects. For fracture surfaces
{=0.8, as in Fig. &), seems to work nicely, and for the
yield surfacest=0.74 would be better thai=2/3. In our
opinion the figure justifies the assumption of an asymptoti-
cally self-similar scaling oP[w(L)]~ f(w/L?).

Yt
<

P

p

o o0 (@)

o,

0O
C. Scaling of overlap quantities

The average overlaPg of fracture and minimum energy
surfaces as a function of the system size for the dilution case
is seen in Fig. #@®). Overlap is defined as the fraction of the
disorder realizations in which at least ore ) coordinate
pair is common between the fracture and yield surfaces.
Clearly the overlap is reduced as a function of the system
size. This is not surprising, because with increasing system
size the probability of the first breaks taking place at the
globally weakest place decreases. However, if one expects
the overlap quantity to originate from the result of depositing
the surfaces randomlike particles of finite width on a 1D
line segment of lengthL), one obtainsP,,,=(ArWes
+AneWme)/L. Ags and Ay e are prefactors needed to com-
pute the typical geometrical extent from the roughness val-
ueswgs andwye . In the figure we have plotte®,,,, from
the same RFN configurations &%, with Ags=Aye=7.5,
which is a rather large value to be realistic; hefee= 4, -

In the figureP,,, has a slope=—0.2 while the asymptotic
scaling according to the random deposition argument should “0 1(')0 2(')0 3(')0 400
be P,,,~L Y2 . For small systems the average overlap is

very large, of the order of 0.5 in the particular case studied

here. 80

Figure 7b) shows the average siz&) of overlapping
clusters. The overlapping cluster is defined as the number of ©
neighboring common x,z) coordinate pairs. The overlap 60 |
cluster size saturates ét)=8.5. Figure 7c) shows the av-
erage total length of the overlap in configurations that do
have an overlap, i.e.XS)/Ng, whereNg=PgN. One may
write (2s)/Npo=({S)NgNp)/No=(s)Ns, where Ny is the
number of overlap clusters in a system that has overlaps. By
assuming thalNs~L and(s)=const, we get ¥s)/No~L,
which is demonstrated in the figure. Since in the laktge-
limit (£s)/No=C;L+C,, C,=23, there is a crossover in 0 . .
systems of siz& =27, because in the small-system-size limit 0 100 200 300 400
>s must be smaller thah. On the other hand;;=0.15 tells system size (L)
us that approximately 15%.0f thg length of the fracture anq FIG. 7. (a) Fraction of the disorder configuratior®g , in which
?getlga?l“;;f?;sirgg’u?ger:fppIng with each other. The scen.ar'l%e fracture surface and the minimum energy interface do have an

ppens to _Start from t_he same mlnl'overlap, i.e., at least one commorx,¥)-coordinate pair, open
mum energy valley where the DP is Ioca_lted, it will naturally circles. The disorder is dilution type wih— 0.8. The data are from
stay localized there; however, the associated surface stiffnegs, same configurations as the data in Fig).3The closed circles

is weaker and thus the excursions. Notice the saturation Ofie for comparison with the valug,,,=7.5WestWye)/L from

the cluster size, which agrees with the scenario. Fig. 3a); see the text for detailgb) The average sizés), i.e., the
Figure 8 shows four examples of what happens with varynumber of common neighboringz)-coordinate pairs, of the over-
ing disorder strengti®J/J, for L=100. The subplots dem- |apping clusters as a function of the system size. The overlap cluster
onstrate several effects. For the weakest disorder, both thgze saturates &5)=8.5.(c) The total length of overlap in configu-
interfaces are nevertheless “rough(.e., not flaj, which  rations that do have an overlap in their interfacEs/Ny. The
shows that in spite of a single, growing crack even the brittldines are linear least-squares fits to the data.
fracture case can produce a crack that fluctuates in the trans-
verse direction. The qualitative behavior is the same for botlorder the crack is finally localized in the lower part of the
cases; note that for the yield surfaces one expects a Larkisystem—the threshold field is rescaled in all the cases with
length scale on which the interfaces look flat due to the comthe “initial” random number being kept constant. Mean-
petition between disorder and elasticity. With increasing diswhile, the damage for brittle fracture grows strongly. Notice

—
<

fraction of overlapping interfaces (P_)

10°
system size (L)

—
(=]

10

O

o
=
=

P ®
o o

overlap cluster size (<s>)
o
(o]

w
=2

system size (L)

--- 3.7+0.5L
— 23+0.15L

0} o
o
.




6318 SEPPAA, RAISANEN, AND ALAVA PRE 61

4.0
o Fracture surface
¢ Minimum energy (a)
[ i 30 | ° b
81/1,=0.3 31/1,=0.5 B
20 | 0T o 3 ¢
0 2
»gw%?«ezg °%:i:$:$;f\¢?2”§3: = fgie o |
80 }O{Eiﬁﬁﬁ’%{%&?@ _g 20 0.55’- 20
60 L0, o o oas | S
N ’ e} * ° A
40 o ; = Lol o af 035 - ¥
. 0
20 * 025 | .
0 ~ : 15 0 055 0% 085 080
0 20 40 60 80 O 20 40 60 80 100 P
X X 0.0 ‘ ‘ ‘
1.00 0.95 0.90 0.85 0.80
FIG. 8. Examples of final damagdiamond$ and the respective fraction of bonds present (p)
brittle failure (solid line) and vyield (dotted ling surfaces for
8313,=0.3, 0.5, 0.8, and 1.0. The system sizes late 10?, and 5.0
the random initial configuration in each system is the same, but the
J.'s are rescaled with the correspondidd. For 63/J,=1 the total 60 A (b)
overlap of fracture and yield surfac&s=85. 4.0 & w0V
- o
. . _ B
how the yield(minimum energy surface moves in the sys- 39 | |
tem aséJ/J, is changed. For the two cases with weakest @ *
disorder the surface stays the same. In two of the subplotsg
there is considerable overlap between the fracture and the %0 20 .
yield surfacess$J/Jy=1 leads to a total overlap a&fs=82. o ©
Figure 9 shows the dependencies of the roughness and
overlap quantities on the disorder strength. Both for the di- 10 ¢ © Fracture surface
lution case, Fig. @), and for systems with randomness from . 4 Minimum energy
the uniform distribution, Fig. @), the fracture and yield sur- 0 ° $ , , , |
faces are always rough, except for the finite size effects in 0.0 02 0.4 0.6 0.8 1.0
the small$J/J, limit. Even in this case the strong disorder width of the disorder distribution (SJ/JO)

fixed point is attractive and we simply have the result that the

system size is smaller than the Larkin length above which FIG. 9. Interface widthw of the fracture and minimum energy
the asymptotic behavior is seen. The roughness increasssrfaces with varying disorder strength for the dilution type of dis-
with decreasing until the bond-percolation limip,=1/2 is  order(a) and uniform distribution of fuse thresholds). The sys-
reached and the surfaces become fractals, with the corréem sizel =100 for each system and the number of realizations is
sponding hull exponent. In the insets the average ovétlap shownin Table I. The insets show for the same systems the fraction
and the average overlapping cluster sjgg are shownP, ~ ©of overlapping disorder configuratioro, open trianglesP a,
increases for both types of disorder with increasing disordeWith Ars=Aye=8 in both cases, closed triangles, and the average
strength, except in the infinitesimal disorder=1— e and overlapping cluster sizes), diamonds, as a function of the disor-
83134= €, limits, where it naturally diverges; the same is true €' strength.

for (s) even with finite disorder. In order to compaRe,

with the random deposition argumei, ., is plotted from indicating that brittle fracture interfaces have a roughness
the data of the same configurations withs= A,c=8 show-  exponent of 2/3as for directed polymeysand are also truly
ing againPo#P,,,. (S) seems to saturate with increasing Self-affine. In spite of the fact that we have studied only two
disorder strength for both types of disorder aroufsj  types of disorder distribution, we nevertheless believe that

~8-10, which might be a coincidence, since one couldhe numerics points to a picture of asymptotically rough
guess it to be disorder-type dependent. cracks in spite of the stress-enhancement effects, which one

would expect to play a role in brittle fracture with a large,
dominating crack. Such is the case in particular for dilution-
type, relatively weak disorder, a main part of our study. No-
This paper has explored the connections between brittléce that for weak disorder even minimum energy surfaces
fracture and minimum energy surfaces. We have given nutend to be relatively flat as the amplitude of the roughness is
merical support for the idea of these being in the same unismall.
versality class in two spatial dimensions. This argument is The results presented earlier were obtained for systems
based on the scaling of interface width and local roughnesthat were governed by extreme scaling-type arguments. The
and the statistics of ensembles of interfaces. For both scalaole of the disorder can be tested in another way, more rel-
brittle fracture and perfect plasticity, or minimum energy, evant to standard fracture surface experiments, by introduc-
interfaces these turn out to have similar scaling propertiedng a notch, or a row of prefailed fuses. The current distri-

V. DISCUSSION
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Troomre surface o There are several experimental indications of the conclu-
Minimum energy +- sion that brittle fracture interfaces exhibit self-affine behav-
ior, with a roughness exponent close if not equal to the per-
fect plasticity one. Experiments done on real materials can
bridge the gap between the two extreme limits. For such
studies the expected behavior would in 2D, assuming slow
failure, be self-affine as well. The extraction of the roughness
exponent has been done here using the local width as a mea-
sure. For ensembles of experiments one should note the sta-
EH 7z tistical implications of the scaling of the roughness distribu-
tion width and of the shape of the width probability
FIG. 10. Roughness of fracture and minimum energy surfaces iflistribution. The relative “irrelevance” of a notch hints
a notched sample with varying notch length. The system sizes ardbout the possibility of pinning-center-like scaling proper-
L2=100 and the disorder is dilution type with=0.8. ties, as should be true for the perfect plasticity case: the
notch pins the final crack with certainty if it is large enough.
Finally, we note that there is no rigorous theoretical argu-

bution around the crack tip is a combination of the ) .
enhancement effect of the crack plus the additional fluctuaMent that would explain why brittle fracture seems to follow

tions created by possible off-path or fracture process zonME'type sc_aling. Indeed, we have here studied only Fhe scal-
damage. Born-model simulations by Caldareitial. [19] ing of the interface roughness, and the aspect of interface

show that self-affine cracks can avoid surface tension effect ’nergetlcs in terms of, €.9. the energy fluctuation expoﬁen;
i.e., they do not straighten out, if started from point seeds. | as been left aside. No.tlce.that the bf”“e strength prop(_ertles
our case the question becomes whether the effective surfa € governed.by Iogar|thm_|c effects in the case of brittle
tension of the notch plus the grown crack wins over disorder ailure. For brittle fracture interfaces to result from global
remembering that the stress enhancement for a symmetr, timization the initial failure thresholds have to be renor-
crack is largest on axis. This is a necessary mechanism fd‘palized by the correlations that the stress intensities of the
any self-affine behaviof whether of the minimum energycraCk history induce. For such extremal statistics processes

surface universality class or not. Figure 10 shows the inter™© theory exists _for the time being, unlike the case of the
face roughness of yield and brittle fracture surfaces for aguenched Laplaman_bre'akdown model for which one can use
fixed system size and varying notch length. It transpires tha'ie"’“'s‘:""‘Ce renormalizatig20].

for both ME and brittle fracture surfaces the notch effect
does not imply the flattening. Note the earlier arguments that
yield surfaces have higher surface tension. This is again
due to the memory effect, which renormalizes the thresholds The authors would like to thank the Finnish Cultural
in the tangent problems so that they are smallest on the cradkoundation(V.R.) and the Academy of Finland for financial

Roughness

S S e - T -

4 8

16
Notch length

ACKNOWLEDGMENTS

axis. support through the Matra program.
[1] E. Bouchaud, J. Phys.: Condens. Maie#319(1997. ited by H. J. Herrmann and S. RoXorth-Holland, Amster-
[2] P. Daguier, B. Nghiem, E. Bouchaud, and F. Creuzet, Phys.  dam, 1990, Chaps. 4-7.
Rev. Lett.78, 1062(1997). [13] P. M. Duxbury, P. L. Leath, and P. D. Beale, Phys. Re®&B
[3] T. Halpin-Healy and Y.-C. Zhang, Phys. R&&4, 215(1995. 367(1987; Phys. Rev. Lett57, 1052(1986.
[4] D. Fisher, Phys. Rev. Leth6, 1964(1986. [14] B. Kahng, G. G. Batrouni, S. Redner, L. de Arcangelis, and
[5] A. A. Middleton, Phys. Rev. B52, R3337(1995. H. J. Herrmann, Phys. Rev. 87, 7625(1988.
[6] M. J. Alava and P. M. Duxbury, Phys. Rev. 84, 14 990 [15] M. Alava, P. Duxbury, C. Moukarzel, and H. Rieger,Rhase
(1996. Transitions and Critical Phenomenadited by C. Domb and
[7] J. Kertesz, V. K. Horvath, and F. Weber, Fractdls67 (1993. J. L. Lebowitz(Academic Press, London, in preéss
[8] A. Hansen, E. L. Hinrichsen, and S. Roux, Phys. Rev. l68t. [16] S. Roux and A. Hansen, J. Phys.2l1 1007 (1992.
2476 (1997). [17] Z. Rz and M. Plischke, Phys. Rev. 30, 3530(1994.
[9] V. I. Raisanen, E. T. Sepfla, M. J. Alava, and P. M. Duxbury, [18] Compare, e.g., A.-L. Barabaand H. E. Stanleykractal Con-
Phys. Rev. Lett80, 329(1998. cepts in Surface GrowtKiCambridge University Press, Cam-
[10] V. I. Rdisanen, M. J. Alava, and R. M. Nieminen, Phys. Rev. B bridge, U.K., 1995
58, 14 288(1998. [19] G. Caldarelli, C. Castellano, and A. Vespignani, Phys. Rev. E
[11] G. G. Batrouni and A. Hansen, Phys. Rev. L&80, 325 49, 2673(1994.
(1998. [20] R. Cafiero, A. Gabrielli, M. Marsili, L. Pietronero, and

[12] Statistical Models for the Fracture of Disordered Medexd- L. Torosantucci, Phys. Rev. Leff9, 1503(1997.



